[GAN] Style 적대적 생성 신경망 (StyleGAN)
·
CS/ML
StyleGAN은 style transfer를 기반으로 인물의 구체적인 특징(style)을 구분하여 부분적으로 합성할 수 있게 해줍니다. 따라서 StyleGAN의 구조에 있어서 얼마나 style을 잘 잡아내는지, 그 style이 다른 style의 변화에 영향을 주지 않고 독립적인지를 따져보아야 합니다.1. 개요구조 설명에 앞서 몇 가지 용어를 알아야 합니다.1.1. Entanglement / disentanglement 앞서 말했듯이 styleGAN에서 중요한 점은 어떤 style이 다른 style에게 영향을 미쳐서는 안된다는 것입니다.만약 각각의 style들이 서로에게 영향을 주는 상태라면 이를 engtangled라고 부릅니다.반대로 각각의 style들이 독립적으로 존재한다면 disentangled라고..
[GAN] 조건적 적대 생성 신경망 (CGAN)
·
CS/ML
일반적인 GAN의 경우 생성하는 위조 데이터를 원하는 속성의 데이터로 생성해낼 수 없다는 단점이 있습니다. 예를 들어 강아지 사진을 생성하는 GAN 모델의 경우, 무작위 강아지 사진을 생성할 수 는 있지만, 푸들이나 리트리버와 같이 특정한 견종을 지정하여 생성할 수 없습니다.  이를 개선하기 위해 GAN에 추가적인 조건(condition)을 제공하여 구체적인 속성의 데이터를 생성할 수 있게 해주는 조건적 적대 생성 신경망(Conditional Generative Adversarial Network, CGAN)이 개발되었습니다. [1] 1. 구조 CGAN은 원하는 조건을 나타내는 condition 변수를 가지고 있음을 제외하면 GAN과 동일한 구조를 가지고 있습니다.이 condition 변수는 상황에 따라..
[GAN] 적대적 생성 신경망(GAN)
·
CS/ML
적대적 생성 신경망(Genrative Adversarial Neural network, GAN) 혹은 적대적 생성 모델은 신경망의 응용 기술 중 하나로, 주로 주어진 상황에 맞는 위조 데이터를 만들어내는 데 사용됩니다. 예를 들어 GAN은 가짜 인물사진이나 문장을 만들어낼 수 있습니다.  GAN은 2014년 신경정보시스템처리학회에(NIPS)에서  Ian Goodfellow에 의해 처음으로 제시되었고, 이후로 여러 변형과 응용을 거치며 널리 쓰이게 되었습니다. 1. 개요 GAN은 크게 Generator(생성자)와 Discriminator(판별자) 두 개의 모델로 이루어져 있으며, 이들이 서로 적대적으로 경쟁하면서 각자의 성능을 향상시키게 됩니다. - Generator : 위조값을 생성합니다. Discrim..