[PS] Leet | 153. 정렬된 회전배열에서의 최소값
문제
Suppose an array of length n sorted in ascending order is rotated between 1 and n times.
For example, the array nums = [0,1,2,4,5,6,7] might become:
[4,5,6,7,0,1,2] if it was rotated 4 times.
[0,1,2,4,5,6,7] if it was rotated 7 times.
Notice that rotating an array [a[0], a[1], a[2], ..., a[n-1]] 1 time results in the array [a[n-1], a[0], a[1], a[2], ..., a[n-2]].
Given the sorted rotated array nums of unique elements, return the minimum element of this array.
You must write an algorithm that runs in O(log n) time.
예시
Example 1:
Input: nums = [3,4,5,1,2]
Output: 1
Explanation: The original array was [1,2,3,4,5] rotated 3 times.
Example 2:
Input: nums = [4,5,6,7,0,1,2]
Output: 0
Explanation: The original array was [0,1,2,4,5,6,7] and it was rotated 4 times.
Example 3:
Input: nums = [11,13,15,17]
Output: 11
Explanation: The original array was [11,13,15,17] and it was rotated 4 times.
조건
- n == nums.length
- 1 <= n <= 5000
- -5000 <= nums[i] <= 5000
- All the integers of nums are unique.
- nums is sorted and rotated between 1 and n times.
답
O(logn)이 필요하므로 이진 탐색을 사용합니다.
단조 증가 수열이므로, 맨 오른쪽 값보다 중간값이 더 크다면 그 사이에는 계속 증가한다는 뜻이고,
따라서 왼쪽과 중간 사이에 최대/최소가 전환되는 지점이 존재한다고 볼 수 있습니다.
반대로 중간값보다 맨 왼쪽 값이 더 작으면 중간과 오른쪽 사이에 전환되는 지점이 존재합니다.
/**
* @param {number[]} nums
* @return {number}
*/
var findMin = function(nums) {
let start = 0;
let end = nums.length - 1;
while (start < end) {
const mid = Math.floor((start + end) / 2);
if (nums[mid] < nums[end]) {
end = mid;
} else if (nums[start] <= nums[mid]){
start = mid+1;
}
}
return nums[start];
};